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ABSTRACT

Fine-tuning pre-trained language models, such as BERT, has
shown enormous success among various NLP tasks. Though
simple and effective, the process of fine-tuning has been found
unstable, which often leads to unexpected poor performance.
To increase stability and generalizability, most existing works
resort to maintaining the parameters or representations of pre-
trained models during fine-tuning. Nevertheless, very little
work explores mining the reliable part of pre-learned infor-
mation that can help to stabilize fine-tuning. To address this
challenge, we introduce a novel solution in which we fine-tune
BERT with stabilized cross-layer mutual information. Our
method aims to preserve the reliable behaviors of cross-layer
information propagation, instead of preserving the information
itself, of the pre-trained model. Therefore, our method circum-
vents the domain conflicts between pre-trained and target tasks.
We conduct extensive experiments with popular pre-trained
BERT variants on NLP datasets, demonstrating the universal
effectiveness and robustness of our method.

Index Terms— Pre-trained Language Model, Fine-tuning
Stability, Mutual Information

1. INTRODUCTION

Large scale pre-trained language models, such as BERT, have
dominated a wide range of NLP tasks. This facilitates a com-
mon practice of fine-tuning the pre-trained BERT for a few
epochs to adapt the model to downstream tasks. Although
fine-tuning is simple and effective, it remains unclear how
pre-learned general knowledge benefits specific tasks. This
leads to a practical issue that, a fine-tuning process exhibits
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severe instability, i.e. fine-tuning on the same dataset with
different seeds often leads to quite different results (in terms
of accuracy), some of which generalize very poorly.

To solve this problem, a major idea of existing studies is
to impose an additional regularizer, to constrain the learned
parameters or representations around that of the pre-trained
model. For example, Li et al. propose L2-SP[1], a modi-
fied form of weight decay that uses the starting point (SP)
as a reference. Mixout[2] maintains the pre-trained weights
when performing dropout[3] to suppress the deviation from the
pre-trained model. SMART[4] and R3F/R4F[5] employ trust
region theory to constrain the representation movements when
adapting to the target task. Though these sorts of approaches
have been demonstrated very effective on some tasks, there in
fact exists a severe risk of negative transfer[6], i.e., information
learned from the pre-trained task may not always be helpful
for the target task [7, 8, 9]. We argue that, the effectiveness
of most existing regularization methods is highly based on
data-dependent assumptions, which are not always valid. This
consequently limits their scope of applicability.
Our work It follows the aforementioned line of research, fo-
cusing on regularization but defining a new regularizer from
a different perspective. We aim to preserve a pre-trained
model’s reliable behaviors of cross-layer information prop-
agation, rather than preserving the information itself. Specifi-
cally, for two adjacent layers’ sequence representations Ti and
Ti+1, we encourage their mutual information I(Ti, Ti+1) =
H(Ti) − H(Ti|Ti+1) to be stable during fine-tuning. This
reference value of mutual information is a prior, suggested by
the pre-trained model.

To enable an end-to-end training by gradient descent, we
employ Mutual Information Neural Estimator (MINE)[10] to
estimate the mutual information. Between each two adjacent
layers, a light-weight MINE network is plugged in to monitor
and regulate the mutual information. Since MINE involves an
extra optimization process, we propose to adopt an efficientIC
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Fig. 1. The pipeline of our approach: fine-tuning via stabiliz-
ing cross-layer mutual information (MI).

scheme to perform alternate updates for the MINE network
and the backbone network, e.g. BERT. The main idea of our
approach is illustrated in Figure 1.

We evaluate the proposed approach with BERT[11] and
RoBERTa[12], on both classification (RTE and MRPC) and
regression (STS-B) tasks from the popular GLUE benchmark.
The results demonstrate that our method consistently improves
the vanilla fine-tuning and yields competitive performance
compared to the state-of-the-art fine-tuning regularizers, in-
cluding L2-SP[1], Mixout[2], SMART[4] and R3F[5]. In
addition, we also provide further analyses explaining why our
approach delivers good performance.

2. PRELIMINARIES

Problem Definition Unlike standard supervised learning, the
fine-tuning process starts from a pre-trained status which holds
a parameters-prior obtained from a relevant source task, thus
giving a more heuristic initialization than a random one for
the model used in a target task. Specifically, we use f(.;θ) to
denote the model, of which pre-trained parameters are θ0. We
optimize the model with Stochastic Gradient Descent (SGD)
for T iterations. θt denotes the learned parameters at the t-th
iteration, and can be generally obtained by

θt = min
θ

E
x
{L[f(x;θ)]}+ λR(θ), (1)

where L is the empirical loss and R defines the regularization
term. λ is the coefficient to balance their effects. Note that
in the fine-tuning framework, the regularization term R(θ)
can also involve the historical parameters on an optimization
trajectory, i.e. θ0,θ1, ...,θt−1.

2.1. Regularizers for Fine-tuning BERT

Here we summarize the formats of the state-of-the-art fine-
tuning regularizers which are most relevant to our method.

Shrinking towards zero The most common choice is the L2

penalty imposed on the parameters with the form of R(θ) =
∥θ∥22, also known as weight decay in deep learning. This
naive regularizer may lead to catastrophic memory loss of the
pre-trained knowledge [1, 2, 4].
Shrinking towards the starting point A straightforward ex-
tension of the standard L2 regularizer is to utilize the starting
point as a reference. For example, the L2-SP regularizer [1]
uses the squared Euclidean distance between the learned pa-
rameters and the pre-trained parameters as

R(θ) = ∥θ − θ0∥2. (2)

Mixout [2] extends the standard form of Dropout [3] in transfer
learning context by mixing the pre-trained parameters into
Dropout. The proposed Dropout(θ,θ0) acts as an implicit
regularizer.
Shrinking towards preceding regions Trust region the-
ory [13, 14] motivates a sort of fine-tuning approaches aim-
ing to suppress aggressive updating [4, 5]. Specifically,
SMART [4] employs the Bregman divergence as a regularizer
that

R(θ) = E
x
{KLs(f(x;θ), f(x;θ

t−1))}, (3)

where KLs denotes the symmetric Kullback–Leibler diver-
gence. Intuitively, such a regularizer prevents a new solution
from deviating too much from preceding regions.

Note that SMART [4], as well as FreeLB [15], also intro-
duce an adversarial regularization to smooth the learned model.
Aghajanyan et al. discuss its relationship with trust region and
propose an adversarial-free implementation R3F [5] as

R(θ) = E
x
{KLs(f(x;θ), f(x+ z;θ))}, (4)

where z is a random noise subjecting to the Gaussian or Uni-
form distribution. Hua et al. introduce a similar method that
encourages noise stability [16].

3. APPROACH

3.1. Cross-layer Mutual Information

In information theory, mutual information (MI) between two
random variables quantifies the amount of information that
one variable obtains due to the observation of the other. Let
X and Z denote two random variables, respectively. From the
perspective of uncertainty, mutual information is defined as

I(X,Z) = H(X)−H(X|Z), (5)

which can be interpreted as the reduction of the variable X’s
entropy given another (usually relevant) variable Z observed.

Our proposed cross-layer mutual information stabilizer
considers the special [CLS] token in BERT. [CLS] is the first
token of a BERT input sequence. For classification tasks,
every hidden state corresponding to this token is considered
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to be the aggregate representation of a hidden layer, namely
sequence representation Ti in this work. Our method focuses
on the mutual information of two adjacent layers’ sequence
representations, which can be regarded as two relevant random
variables.

3.2. Mutual Information Estimator

Dependence of two random variables can also be measured by
the distance between their joint probability distribution and the
product of their respective marginal distributions. In this sense,
mutual information between X and Z can be formulated as

I(X,Z) = KL(PXZ∥PX ⊗ PZ), (6)

where KL stands for the standard KL divergance, PXZ the
joint distribution, and PX /PZ the marginal distributions. A
recent work MINE [10] converts the KL divergence to its dual
representation according to the theorem of Donsker-Varadhan
representation [17]. By employing a neural network G param-
eterized by ϕ ∈ Φ to solve the induced supremum problem,
MINE [10] further formulates the estimation of mutual infor-
mation as

I(X,Z) = sup
ϕ∈Φ

EPXZ
[Gϕ]− log(EPX⊗PZ

[eGϕ ]). (7)

In practice, a two-layer fully-connected network is employed
as G. We use Monte Carlo sampling to approximate the expec-
tation and perform stochastic gradient ascent to approach the
supremum. The converged value is regarded as an estimation
of the mutual information between X and Z.

3.3. The Overall Framework

Our proposed framework consists of a two-stage procedure.
The first stage is to initialize mutual information (MI) esti-
mators and to calculate MI references, using the pre-trained
BERT model as a feature extractor. The second stage is to
alternately fine-tune the BERT model and the MI estimators.
Initializing MI Estimators Let M denote the number of lay-
ers in BERT. We plug in a MINE network between every two
adjacent layers. Using Ti to denote the output distribution
of the sequence representations at the i-th layer, the MINE
network g(.;ϕi) (i = 1, 2, ...M−1) is responsible for estimat-
ing mutual information between the i-th and (i+ 1)-th layer,
taking Ti and Ti+1 as an input, respectively.

To initialize the MI estimators, we freeze the pre-trained
BERT and feed forward all training examples at one time.
For each training example, we obtain its all M hidden-layer
sequence representations, which are then used to optimize
Equation 7 until convergence. Afterwards, we have the ref-
erences of mutual information between every two adjacent
layers {bi}M−1

i=1 . Concurrently, the MI estimators are initial-
ized over target examples using the pre-trained BERT as a
feature extractor.

Alternately Fine-tuning In this stage, we update both the
BERT model and the MI estimators in an end-to-end fashion.
The reason why the MI estimators still need fine-tuning lies
in that, when deep representations move during BERT fine-
tuning, the MI estimators learned in the first stage are no longer
accurate. Fortunately, the pre-training process provides a good
initialization for the MI estimators, and fine-tuning them will
help them catch up the movements of deep representations.
Updating MI estimators When updating the MI estimators,
we freeze the BERT model and maximize Equation 7 with
stochastic gradient ascent. We empirically find that, updating
each MI estimator for one iteration (corresponding to one iter-
ation of BERT fine-tuning) is enough to maintain an accurate
approximation.
Updating BERT We freeze the MI estimators while updating
BERT. The regularization term used to stabilize cross-layer
mutual information is

RMI(θ) =

M−1∑
i=1

(g(Ti, Ti+1;ϕ)− bi). (8)

Note that {Ti}Mi=1 are in fact affected by θ, which is omitted
in Equation 8 for brevity. With the aforementioned regularizer,
the final solution of our approach can be formulated as

θ = min
θ

E
x
{L(f(x;θ)) + λRMI(θ)}, (9)

where L is the standard empirical loss, such as cross entropy in
classification. The superscript t in Equation 1 is omitted since
our approach does not involve checkpoints in the optimiza-
tion trajectory. We solve Equation 9 with stochastic gradient
descent.

4. EXPERIMENTS

4.1. Experimental Setup

Data To clearly identify which regularization methods are
superior, we fine-tune BERT-based models on three small
datasets from GLUE [18]: RTE, MRPC and STS-B.
Model We use two BERT-based models: BERT-Large-
Uncased [11] and RoBERTa-Large [12] for fine-tuning. In
particular, we follow BERT to fine-tune the pre-trained models
for 3 epochs, with a learning rate of 2e-5, batch size of 32.
AdamW [19] is used as the optimizer. Each experiment is
repeated over 20 different random seeds. We report the mean
and median of the results obtained from the multiple runs, as
well as the standard deviation (std). Our implementation is
based on the Huggingface transformers [20].
Baseline Methods Besides the vanilla fine-tuning [11], we
compare our method with typical state-of-the-art fine-tuning
regularizers, including L2-SP [1], Mixout [2], SMART [4] and
R3F [5].
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Table 1. The results of fine-tuning BERT and RoBERTa over
20 random seeds with different regularization methods.

RTE MRPC STS-B

mean std median mean std median mean std median

BERT 53.94 10.59 47.29 73.93 7.83 68.38 75.94 31.08 89.62
+L2-SP 53.75 9.27 47.29 75.20 8.64 68.38 70.31 35.07 89.63
+Mixout 50.25 7.26 47.29 73.63 7.53 68.38 88.76 3.08 89.90
+SMART 51.82 7.91 47.29 70.98 4.44 68.38 81.31 23.62 89.31
+R3F 51.12 7.88 47.29 79.13 9.10 84.80 82.20 22.29 89.39
+Ours 67.11 6.10 69.13 85.50 2.26 85.91 89.40 0.68 89.45

RoBERTa 84.80 8.90 86.64 86.35 7.78 89.46 92.15 0.14 92.15
+L2-SP 87.47 1.47 87.36 86.62 7.91 89.58 87.57 20.73 92.19
+Mixout 78.43 16.03 85.92 89.58 0.69 89.58 92.25 0.18 92.23
+SMART 87.11 1.37 87.18 81.67 5.94 84.19 89.38 12.63 92.22
+R3F 87.64 0.85 87.55 90.43 0.69 90.44 92.26 0.17 92.31
+Ours 87.74 1.19 87.73 89.91 0.75 89.95 92.10 0.09 92.09

4.2. Results and Analyses

The summary of experiments is Table 1, our method always
outperforms the vanilla fine-tuning, in most cases by a signifi-
cant margin of the mean value. In contrast, the other regulariz-
ers sometimes perform worse than the vanilla fine-tuning. Our
method yields surprising mean and std value improvements
when fine-tuning BERT. This is because the other methods
more or less suffer from failed runs, severely affecting the
mean and std values. On the contrary, our method is not sub-
ject to failed runs, which eventually benefit the performance.

In most experiments, our method achieves the highest
or second-highest median value. It is worth noting that, a
few completely failed runs yielding very low performance
can severely reduce the mean results. In such scenarios, the
median value is useful to reflect the performance that the most
runs are expected to achieve, alleviating the influence of a
few outliers. Indicated by the reached higher median values,
fine-tuning with our regularizer is more likely to yield a better
generalization.

4.3. Effectiveness of MINE

Our regularization method employs MINE for mutual infor-
mation estimation. To validate that MINE is reliable for esti-
mating cross-layer mutual information of BERT, we compare
MINE with the binning method, which is widely adopted for
analyzing DNNs. The binning method firstly divides the en-
tire interval of a continuous variable into a number of 50000
uniformly spaced bins, using its maximum and minimum as
the bounds. Thus, every sampled continuous value can be con-
verted into a discrete one that belongs to its corresponding bin.
Since the binning method is not feasible for high-dimensional
variables, we randomly choose five channels and calculate
their individual mutual information with binning.

As shown in Figure 2 Left, these mutual information val-
ues of different channels exhibit similar trends, though these
channels would not be completely independent of each other.
The result of MINE also shows a similar trend as that of the
binning method.

Fig. 2. Left: Cross-layer mutual information estimation results
between MINE and binning-based mutual information estima-
tor; Right: Performance distribution of information bottleneck.

4.4. Comparison with Information Bottleneck

The Information Bottleneck (IB) theory [21] is related to our
method. Tishby formulates the learning objective as minimiz-
ing the IB Lagrangian: I(X;T )− βI(T ;Y ), where the latter
term has an effect of minimizing the standard cross entropy.
Therefore, IB is equivalent to a regularizer that minimizes the
mutual information between a hidden representation T and its
corresponding input X . To verify our hypothesis, we compare
our method with the original IB and its variant. The original
IB minimizes I(X;Ti) for all the M − 1 layers, while its vari-
ant uses the starting point (SP) as a reference (named IB-SP),
aiming to minimize I(X;Ti)−I0(X;Ti), where I0(X;Ti) is
pre-computed with the fixed pre-trained BERT. For each ver-
sion, in addition to regularizing all the layers, we also evaluate
their performance by only regularizing the highest four layers
for a comprehensive evaluation.

We illustrate the results in Figure 2 Right, where ‘all’ refers
to regularizing all layers and ‘top’ refers to only regularizing
the highest four layers. We find that the original IB performs
significantly worse than our method. However, IB actually
improves fine-tuning stability, demonstrating its reasonable
assumption. By utilizing the pre-trained BERT as a reference,
IB-SP achieves a better overall performance than the original
IB. Nevertheless, IB-SP is demonstrated inferior to our method,
especially when only regularizing the highest four layers. We
speculate this might be because it is rather challenging to build
a direct connection between the input and the representations
of the higher layers, due to the larger feature dimensions and
the inherent optimization difficulties of deep networks.

5. CONCLUSION

In this paper, we explore addressing the issue of instability in
BERT fine-tuning. We propose to stabilize the fine-tuning with
a regularizer that leverages cross-layer mutual information.
With the aid of an appropriate mutual information estimator
(i.e. MINE), our method achieves competitive performance
on various BERT fine-tuning tasks. Moreover, we interpret
how our method relates to the classical Information Bottleneck
theory, further demonstrating the rationale of our method.
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